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Hierarchical model in multiphase flow
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A hierarchical model for two-phase flow is constructed. The model has two layered systems one correspond-
ing to the macroscopic hydrodynamics described by the Navier-Stokes equation and the other to the interfacial
dynamics described by the Cahn-Hilliard-type equation. Numerical simulations in some simple cases are
carried out to examine the validity of the model. As an application of the model simulations of two colliding
droplets under shear flow are presented.

PACS numbse(s): 83.10.Lk, 68.10-m, 82.70-y, 47.11:+]j

I. INTRODUCTION rheological properties of some dispersion system, for ex-
ample, we must carry out a simulation in a huge system.
When we intend to perform a numerical simulation of In order to overcome these difficulties a certain kind of
complex flows such as turbulent flows in geophysical sysmultiscale modeling should be explored. As a first step, we
tems or microhydrodynamical flows in soft materials, we of-would like to model a simple but nontrivial system in view
ten encounter the difficulty that the resolution is too low with Of the multiscale modeling. In our model the mesoscopic
a macroscopic model or the system size is too small with &lynamics is incorporated into the macroscopic hydrodynami-
microscopic model to obtain significant results. This is duecal model, and the system is constructed with two layered
to the fact that a nonlinearity of governing equations cause8ystems corresponding to the macroscopic and mesoscopic
an interference among degrees of freedom with differenflynamics. Since the mesoscopic dynamics is relevant only
scales or the fact that macroscopic processes are inevitabfgar the interface, we can reduce computational tasks by
affected by more microscopic processes which are not avefestricting domains of computation within the interfacial re-
aged out. It is worth while studying a numerical method togions.
connect a model with another one, where the scales of the This paper is organized as follows. In the next section we
phenomena described by the two models are different. T60Nnstruct a two level model after introducing the macro-
our knowledge there is no established method for such corcopic and mesoscopic models. Next, we carry out numerical
nection between models. The aim of this paper is to show &mulations in some simple cases and demonstrate their re-
prototype of such method for two-phase flow systems. sults. We also present some results of the simulation which is
In two-phase flow SystemS, interfaces between the tW(performed on droplet systems under shear flows. Finally, we
phases play an important role. Let us imagine a coalescen&mmarize this work.
of two droplets. This event occurs in a small scale region
which has comparable size to the interface thickness, while it Il. HIERARCHICAL MODELING
causes a change of global structure of the domains. This
means the dynamics of interfaces is crucial for the macro- A. Macroscopic hydrodynamic equations in a two-phase
scopic two-phase flows. In a macroscopic hydrodynamical system
treatment they are formulated as boundary value problems pacroscopic two-phase flows in isothermal systems are
with moving boundaries where the interfaces are regarded agually formulated by the Navier-Stokes equations and
mathematical surfaces or boundaries with an infinitesimahoundary conditions at interfaces between the two phases. In
thickness(For a recent review of the free-surface flow prob- this paper we study low Reynolds number fluids so that the
lems, see Ref{1].) From a numerical view point, it is & convection term can be neglected. For two immiscible fluids

heavy task to solve these problems for complex systems andB, the governing equations with no body forces are
Moreover, the coalescence of domains must be incorporated

on some artificial assumptions. v,

On the other hand, as long as slow dynamics of phase Pa™5 == Vp.t7.4v,, @)
ordering systemg5], there is a mesoscopic model to de-
scribe the dynamics of the order parameter field where the V.o =0 @

interface is expressed as a singular region of the field. Since
the order parameter field is smooth even in the interfacial
regions, the coalescence of domains are naturally describaherea=A or B andp,, v,, p., andz, are the density,
with no artificial assumptions. However, the size of interfa-the velocity, the pressure, and the shear viscosity @ifiid,

cial region or the interface thickness is very small comparedespectively. With no mass transfer across the interface, the
to the typical domain size in the systems which we wouldboundary conditions at the interface are given by

like to consider. For some materials, the ratio of the interface

thickness to the domain size is 19-10“ [2]. To obtain va—vg=0, €)
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(Tao—Tg)-N+okn=0, (4) the units of space and time, respectively. Note that
=(K/€)? andto=K/(Le?) whené=D=1, and they give

wheren is the unit normal vectofdirected intoA) to the the interface thickness and diffusion time, respectively. Us-
interface, T,=— p,| + 7,(Vv,+Vu!) is the stress tensor ing these scalings, the model equations now become as fol-
(I is the unit tensor an& v is the transpose of the tensor lows (henceforth we use the same notation for dimensionless
Vuv,), o is the surface tension, andis the mean curvature Vvariables as for the corresponding variables having physical
of the interface defined as the sum of principal curvaturesdimensions
Here we have assumed that the surface tensi@nconstant.

Iy
B. Model in interfacial regions ot o V)g=Das, ®

The above model does not describe a precise dynamics of
a system which has diffusive interfaces. In order to describe v__ Vp+TuVy+PDV[u(Vo+Vo"], (10
the proper dynamics of two-phase flow in the interfacial re- ot
gions, we employ the Cahn-Hilliard-type model under exis-
tence of flow field which is called “model H” according to V.-v=0, (12)
the terminology of the critical dynamids$,4]. This model _
has been used to describe the dynamics of phase separatNYHh
[5-8].

We consider a phase-separating binary fluid mixture p=—ENp—y+yP, (12)
which is characterized by a scalar order parameter field. The
order parameter field corresponds to local concentration dif- v=1+w14, (13

ference between the two phases. lgtr,t) be the order

parameter field at positionand timet, andw(r,t) the local ~WhereI'=eyg/(pug), P=wo/(Le), and vy is the dynamic
velocity field of the fluid. Time evolution of the system is Vviscosity when =0, that is, vo=75/p and v,
determined by the following set of equations in the absences (71/70) ¥o. Equationg9)—(13) form a basic model for the

of thermal fluctuationghereafter we omit the arguments of dynamics in the interfacial region. The dimensionless param-

the variables unless any confusion ar)ses etersI', P, and v, characterize physical properties of the
system. Note that the surface tension in this system is given
J 12,2 .
—lp+(v-V)z,b= LA, 5 by (2\/2/3)(K/e) ey (see, for example, Ref4]), and if
at we define the dimensionless surface tensiorscaled by

pull,, it is given byo=(22/3)¢T. It is also noted that the

v_ VPt pV gV [5(Vo+ Vo), ®) equilibrium solutions with no flow field are given hy=0

Par and the interface is defined as a set of points that satisfy
Y(r)=0.
V-v=0, 7) We now discuss a thin interface limitt{0) of Egs.

(9)—(11) that should yield the macroscopic equations which
wherelL is the kinetic coefficientp the fluid density which is  correspond to Eqg1)—(4). For simplicity, we here consider
assumed to be constant independent,op the pressure, and a Stokesian flow, that is,

7 the shear viscosity.

Equation (5) represents the conservation ¢f with the ~Vp+TuVy+PDV [»(Vo+Vov)]=0, (19
diffusion flux —LV «. The chemical potentiahk is derived
from the free energy functiond[¢] as uw=(8/5y)F[¢]. instead of Eq(10). We assume that the order parameter field

We assume the following Ginzburg-Landau type free energys almost in equilibrium and radii of curvatures of interfaces
for E[4]: are always much greater than the interface thickgess the

limit of £€—0, ¢ can be regarded as a step function, that is,

K € g =41 (in Aphasgor —1 (in B phase. Equation(14) now
F[lﬂ]:f df[§|V¢|2— §¢2+ Elﬂ‘l : (8 becomes, in the bulk regions,
whereK, €, andg are positive constants. —Vp+PD(1£v,)Av=0, (15

The surface tension term, the second term on the right ) o
hand side of Eq(6), arises in the Navier-Stokes equati@  Where plus or minus sign in front of; correspond to thé
due to inhomogeneity ofr. The shear viscosityy may de-  OF B phase, respectively. The boundary conditidh at the
pend ony. We expand it with respect tg up to the first mtgrfage can b_e obtz_alned py integrating Em).over a small
order, that is,p= 7o+ 714 with constantsy, and 7. cyl_lndrlcal region(} including a part of the mterface._ The
We now put the above equations into dimensionless formunit normal vectom to the top(or botton) face of( coin-
Let I, andt, be units of space and time, respectively. TheCides wlth the normal to the interface. If we mtroduc:e a unit
velocity and the order parameter are, respectively, scaled byector n(r) at r around the interface defined a¥r)
up=Io/te and o= (6€/g)?> which is the equilibrium value =V /| V | which coincides wit at the interface, we have
of the order parameter. We introduce dimensionless param-
eters é=[K/(el3)]¥? and D=Le/(ugly) which determine Ay=(V-n)|Vy|+n-VVy-n. (16)
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When we choose a local coordinate system where one of the Ir—r'|2

coordinates’ is taken along, we obtain from Eqs(12) and Gp(r—r')=(27h?) 42 exp( T o ) (23
(16), near the interface,

in d-dimensional space. Another example is

Y
2 Y 0¥ 3
pEERGr T Y 17 o Vil bexlsh (=1l
(=10 otherwise 4
2 d’ﬂe
=¢ Kd—g, (18 where X; (x{) is the ith component ofr (r') and V,
=(2h)".

Now we consider two layered systems. One is an original
system and the other is a coarse-grained system. Symboli-
cally, a coarse-grained fieldi) for a field u in the original
system is expressed ds)=Gu with a linear operatoG.
Here we have omitted the suffixto (- - -). Since the opera-

. dip) 2 tor G commute with differential operators, interactions be-
f drl“,uvwzf der gzK( e) ns, (190  tween the two systems arise from the nonlinear terms in Egs.
Q —5 d¢g (9)—(13). If these terms are decoupled except for the surface
tension term in Eq(10), our model can be described as fol-
wheree andSare a half of the height and area of the top  lows. The velocity field(v) in the coarse-grained system is
bottom surface of the cylinder region, respectively,&  determinedfor given ) by

<1). If we rescale the length by, andé—0, then we have
14
) =—=V(p)+PDV[r((y)(V(v)+V(v))]+F,

e die 2 ® o~ ~(die ? ot
f_sdg“I‘gZK( d{) :f mdé’FK( d,z) (25)

V-(v)=0, (26)
:%—F;ZO’K, (20

where k=—V-n is the sum of principal curvatures of the
interface andy,=tanh(/\/2¢) is the equilibrium profile ofy
(£{=0 at the interface Using Eq.(18), the integral of the
second term of Eq(14) is expressed as

where F is the force due to inhomogeneity af which
_ _ should be calculated from the original system as
where (={/¢, k=¢&k. Thus we obtain the dimensionless

version of Eq(4) as a boundary condition for E¢L5). Here F=T{uV). (27
we have required that the velocity field is continuous at the
interface(also see the Appendix In the original system the following equation ¢fis solved

for given (v), after a prolongation ofv) from the coarse-

C. Two-level model grained system,

The model described in the previous section should yield gy
the macroscopic equations in the thin interface lighit0. EJF(U)'V%Z/: DAu, (28)
However, here we would like to model the macroscopic two-
phase flow, keeping finite. Since the order parametér where . is given by Eq.(12).
varies in localized regions with scake while the velocity When the system contains well defined domains, that is,

field v slowly varies, we split the systef9)—(13) into tWo  the order parametef is almost in equilibrium, we can define
layered systems corresponding to the macroscopic and Mgxe interfacial regior? as the region in which the condition

soscopic systems. _ _ |V y|>6for >0 (& is a constant paramejeand D to refer
In order to do this, we define a coarse-grained fieldy, the other region which consists Nfconnected region®,

{u(r))n for a fieldu(r) at levelh as (i=1,2,...N), namely, D=UN D, (see Fig. 1 In this
situation we may reduce the number of degrees of freedom
(u(r)}hzf dr'Gyp(r—r")u(r’), (21)  of the model provided thay is almost in equilibrium inD.

Equation(28) is solved only in the interfacial regiah with

whereGy(r—r') is a weight function having the following boundary conditions

roperties: — — .
Pro b=wi, p=mw on D, (i=12,...N), (29
f dr'Gp(r—r")=1, IimGu(r—r")=48(r—r"). wheredD; denotes the boundary of domdin, % andﬁ
h—0 22 are the boundary values faf and ,u,_respectively. If we

assume that/ rapidly relaxes inD;, ¢ might be constant

—— P i i = i
The levelh represents a degree of coarsening. A typical ex2nd #i=~#i+ 7. Introducing variablesQ;=/p dry (i
ample ofG,(r—r') is the Gauss function =1,...N), ¢ is given by
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FIG. 1. A schematic picture of domains. The gray regions be- FIG. 2. The profiles ofy along the line across the center of
long to the interfacial regiod and other regions belong . domain att=100. Results of models O, I, and’ lare shown by

circles, squares, and triangles, respectively.
h=Q / fpdr. (30

The conservation ofy [Eq. (28)] implies

values, that is,;==1 and n,-Vu=0 on dD; so that
dQ;/dt=0. We refer to this model as model Il

B. Results for some simple systems

d —
ﬁQi T fapidani[¢i<v>+ Vil (31) The simulations of both mode($and II") are carried out

with the following parametersD=1, £2=0.5,'=P=1.0,
where the integral is taken ovefD; (da is a surface ele- v1=0.5, Mg=Ny=64, A;=1.0, and At;=0.01. For the
men} and n; is unit normal vector t/D; (directed outside ~Ssimulation of model It we set5”=0.01. To compare their
D,). Equationg25)—(31) form another version of our model. results we also perform another simulation of the precise

model (9)9—(13) on L; which we refer to as model O. We

impose the periodic boundary conditions on these systems.
ll. SIMULATION AND RESULTS o S .
We create a disklike domain with radil®=20 as an
A. Numerical method initial condition (=1 or —1 inside or outside of the do-

In the previous section, two models are constructed. Ong'ain, respectively, and=0 at every point and calculate
consists of Eqs(25)—(28). (v) andy are solved in the whole the time evolution of thg system for sufficiently long time to
regions of the coarse-grained and the original systems, r&l€t @ relaxed system. Figures 2 and 3 shows the profilgs of
spectively. We refer to this model as model I. The other@Nd(P), respectively, along the line across the center of the
consists of Eqs(25)—(31) where ¢ is solved only in the domain for the three mod_els &t:loo. We can see that the
interfacial region of the original system, whife) is solved ~Model | is a good approximation of the model O. However,

in the whole region of the coarse-grained system. We refer t1the model II slightly underestimates the pressure difference
this model as model II. between the inside and outside of domain. This may be be-

We carry out numerical simulations in two-dimensional €@Use of an underestimation of the surface tension due to the
systems for the model | and a simplified version of model ifinite cutoff & for [V 4. Rememzbir that the Zsurface tension
(see below. For each modell or Il) Egs. (25—(28) are ¢ for this system is given by ¢&°[ ~..(dy/d{)“d¢, wherel
numerically solved using the finite difference method on twois & coordinate along the normal to the interface.
square latticet o andL ; corresponding to the coarse-grained

and the original systems, respectively. The latticél =0 or 0.025 I

1) hasM, XN lattice points and mesh siz_kq. We qho_ose 0.02 > - MoSell O A
Ap=2A; (My=M,/2,Ny=N;/2) and a lattice pointig,jo) g 5 Model I &
on L, to share the same place asi{2j;) on L;(0<i, 0.015 = y
<M0, 0$j0<N0, O$i1<M1, 0$J1<N1) The Size Of a 0.01 - -

time stepAt, in coarse-grained system should be different = .05 L
from that in original system\t;. We setAt,=4At;. Be-
cause of numerical convenience, we adopt &) as the

»
»

0 -

smoothing function withh=A,. When we need values of -0.005 |- -
(v) on L, in calculating Eq.(28), we get the values by the @_mﬁ ; .
bilinear interpolation from{v) on L,. Although # is not 0.015 L L ! ] ! ! y
strictly conserved by this interpolation, the total amountof 0 10 20 30 40 50 60 70 80
keeps its initial value within 0.2% error through the simula- ®

tion shown in the_ next §ection. ) ) FIG. 3. The profiles of p) along the line across the center of
In the actual simulation shown below we apply a simpli- yomain att=100. Results of models O, I, and’ Iare shown by

fication that the boundary value'} is always the equilibrium  circles, squares, and triangles, respectively.
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1 FIG. 4. Snapshots af shown by gray scale.
Light (dark gray indicates largésmal) . The
figures in the left, middle, and right columns cor-
respond to models O, |, and IIThe timet for the
figures from the top to bottom are 0, 50, 100, 200,
and 300, respectively. For model #t is shown
only in the interfacial regiorf.

Next, we investigate a coalescence process of two disk- We carry out the simulation using model’ livith the
like domains. As an initial condition we put two disklike parametersD=1, ¢2=0.5, andl'=1. These parameters are
domains with the same radifs= /200 at close positions to fixed in the following simulations. To impose the shear we
each other and set=0 at every point. In Fig. 4 we show the use the sheared periodic boundary condition which requires
snapshots ofy for the three models at several times. Thethat (r,t) is the periodic function asy(r+Rp,(t),t)

figures in the left, middle, and right columns in Fig. 4 corre- = i(r,t)

and wo(r,t) satisfies v(r+Rpy(t),t)=v(r,t)

spond to the model O, I, and'liThe timet denoted by the v where R, (t)=(mL,+ 'ytnLy,nLy),anE('ynLy,
the figures are 0, 50, 100, 200, and 300, respectively, fror@) with integersm,n; L= A,M, andL,= AN, are the sizes

the top to bottom. In the figures for model ||l is shown

only in the interfacial regiolX. The result of model | shows
a good agreement with that of model O. The time evolutio

of the system for model 1lis slightly slowed down. This is

of simulation box inx andy directions, respectivelyy is the
shear rate.
First, we study a single droplet system under simple shear

n

due to the same reason as mentioned above. However, tH@WS- The numerical parameters are sethag=120, No

computation time is greatly reduced for modé€l. I[The real
computation times for the simulations of model | anddte
about 1/6 and 1/10 of the time for model O, respectively.

C. Droplet systems under shear flow

=60,A,=1.0, Aty=0.01, 6°=0.01. As an initial condition
we put a disklike domairidropled with radiusR=8 at the
center of the simulation boxg=1 in the domain and/=

—1 otherwis¢ andwv(r)=(yy,0). We carry out the simula-
tion with the parameter®=1, v,=0, and y=—0.05 and

The hydrodynamic study of the deformation, breakup, an@®bserve morphological change of the domain. In the early
coalescence of fluid domains has a long history and exterfime region, the domain is gradually deformed and then

sive studies have been madg9-14. The mesoscopic dy-

reaches a steady state. Figufe)shows a snapshot af in

namics of phase separation processes under external flowse steady state &t=240. We do not observe any breakup of

has also been studied in the last decpti®-17. As an ap-

the domain at these parameter values. However, with in-

plication of our model, we demonstrate the simulation ofcreasing® we observe breakups of the domains. In Fign)5

droplet systems under shear flows.

we show a snapshot of domains after breakup$=a240
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FIG. 7. Diagram that shows morphology of droplets after a col-
FIG. 5. Snapshots of the single droplet system under the shedision under the shear flow with=—0.01. The droplets coalesce
flow with y=—0.05 att=240. ¢ are shown by the gray scale in for P<1 (filled circles, otherwise they do ndempty circleg. The
the same manner as befofa) The droplet is stable and keeps its inserted images show typical time sequendesm top to botton

deformed shape for small (P=1,»,=0). (b) The droplet breaks ©f collisions of droplets. These images are obtainedFer0.5»;
up for largeP (P=5,v,=0). =0.9 (upper lefjy, P=0.5p,=-0.9 (lower left), P=10,y,=0.6
(upper righj, andP=10,v,= —0.6 (lower right.

(P=5, »,=0, y=—0.05). We also perform the simulations _q gy anq their shape are more elongated asecreases.
varying v;. The results are shown in Fig. 6. From thesetpese imply that the coalescence of domains is primarily
results, it appears that the critical valueRto breakup in- .o olled by the parametd? rather thanv,. However, the
creases as, increases wheiP>1. On the other hand, for cqajescence also depends on the viscosity ratio as it is dem-
P<1 breakup of the domain is not observed. . onstrated by the two exceptional cases RE 10, v,=

Next we study a system in which two droplets collide _ 4 g andp=10 v,=—0.9. In this case, the droplets coa-
with each other under shear flow. We tak&=80, No  |esce since they are extremely elongated and in contact for a

I=.ft5.0”and Oth?rt paréa.mkt?.tkers | are set t%_tl;]e sameffa§ bt?forl‘éng time which allows enough mass transports between the
nimatly we put 'wo diskiike comains which are sutlicienty {jroplets by diffusion. Figure 8 shows the results for

separated in the system. These droplets are located a—0.05. At this shear rate no coalescence occurs foe®5

(—=15,—7.5) and (15,7.5) and have the same radRis8. N -
(Here we have set the origin of coordinate at the center of thslo anq 0'9.$ Vlg(.)'g gxcept for the parameters indicated
y half-filled circles in Fig. 8 where after the droplets coa-

simulation box) By imposing the shear flow, these droplets .
collide with each other. The simulations are performed f0|Jesce once, the merged domain separates and become two

various P and v, to investigate whether the two droplets

1

coalesce or not. The results for= —0.01 are summarized in ‘oo o o
Fig. 7. For smallP(<1) the two droplets always coalesce | S
irrespectively ofv,. For P>1 they do not coalesce except 061 L o °© .
for the two cases R=10, v,=-0.6 and P=10, v,= 04t >
(6]®) @) O =
02 =
0.9 1 1 I 1 st bIIe o vl or (0]®) [} [ ]
breakup e 021 o~
L _ X 00 . °
0.6 o] N -
—
0.3 o) ® - 06 00 ° °
\\
S 0F o ) ° - DRT - . -
0.3 o ° . -1-5 0 5 10 15
0.6 o . _
FIG. 8. Diagram that shows morphology of droplets after a col-
0.9 ! ! I ! ! lision under the shear flow with=—0.05. The droplets separate
0 1 2 3 4 5 6 after a coalescence for sm&lland largev, (half-filled circles. For
P large P and smallv, they break up(filled circles and otherwise

they do not coalescéempty circles. The inserted images show
FIG. 6. P-v; dependency of the morphology of a single droplet typical time sequence@rom top to bottom of collisions of drop-
under the shear flow WitFy= —0.05. The empty circles designate lets. These images are obtained R+ 0.5y, =0.6 (upper lef}, P
the parameters where the droplet is stable. The filled circles desig=5.0,,=0.6 (upper righj, P=0.5p,=—0.3 (lower lef}), and P
nate the parameters where the droplet breaks up. =5.0p,=—0.9 (lower righ?.
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droplets again. FoP>1 andv,;<0 the droplets break up, APPENDIX
which is consistent with the results of the simulation for a In this Aopendix we show that the macroscopic velocit
single droplet. Although processes of coalescence anﬁjel PP P y

. S d in our model is continuous at the interface in the thin
breakup of droplets in general situations are rather compli- oo . : .
: . : e interface limit in a particular case. Consider a flat interface
cated, our simulations imply that the diffusivity @f con-

trolled by P has a primary importance to coalescence or°¢ated atz=0, that is, Y(r) = Yre(2) = tanh@/2¢) and a

breakup of domains and, affects deformation or shape of shear flow parallel to the mterface so that the vglocﬂy field
, R has onlyx component which depends an that is, v(r)
domains for fixedy, R, ando.

=(v4(2),0,0). In this casey is not dependent on time and

the Stokes equatiofl4) is simplified as
IV. SUMMARY

. d d

We have constructed a model for two-phase flows which — [ (1+ v1¢he)——v4(2) | =0. (A1)
is incorporated with the mesoscopic dynamics of interfaces. dz dz
Our model has two layered systems corresponding to thﬁ;
macroscopic and mesoscopic dynamics, which provides a
fs?:i?eg,l.e method to connect the phenomena of d'ﬁeremvx(z)=\/Egyoln{[l—we(z)]“[1+¢e(z)]3[1+vl¢e(z)]7}

We have carried out the simulations of the two versions of + U, (A2)
our model(model | and Il for the simple initial conditions )
in two-dimensional systems. The results have been compareth
to those for the precise modémodel Q. The results of

he solution of this equation is

model | is in good agreement with those of model O. We a=— 1 B= 1 __
have, however, observed that for modél the surface ten- 2(1+wvy)’ 2(1-vy)’ Y 1— ,,E'
sion is slightly underestimated and hence the time evolution (A3)

is slightly slowed down. This is due to the finite cutoff for _
|V ¢|. However, model Il works most efficiently among the where y,=dv,(0)/dz and uy=uv,(0). Asymptotic forms
three. We have also demonstrated the simulation of droplaf. (z) of v,(z) asz— = are given by
systems under shear flow and shown that the mesoscopic
dynamics is important in the process of coalescence or . Yo V2&yory 2
breakup of droplets. vy (2) + In

In this study, we have shown a model for rather simple

binary fluids as a prototypical example of multiscale model-rqqe may give the macroscopic flow in the bulk phase. If

ing. However, our model may be appll_cable'to more COmpl"we extrapolatey, (z) into the interface region, we find that
cated system such as two-phase fluids with surfactants

) o . +

polymers(ternary fluid mixtureswhose dynamical behavior cf_es_e asymE[thotlc velocities are continuouszatzolvy (z)

is a critical subject to study. Such an extension of our model” Vx (Z0)] wi

is a future problem. J2¢
———In

20:

= +Up.
1+ Vq 1— V% 1+ Vq Uo (A4)

1+ V1
2 1_V1

(A5)
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