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Hierarchical model in multiphase flow
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A hierarchical model for two-phase flow is constructed. The model has two layered systems one correspond-
ing to the macroscopic hydrodynamics described by the Navier-Stokes equation and the other to the interfacial
dynamics described by the Cahn-Hilliard-type equation. Numerical simulations in some simple cases are
carried out to examine the validity of the model. As an application of the model simulations of two colliding
droplets under shear flow are presented.

PACS number~s!: 83.10.Lk, 68.10.2m, 82.70.2y, 47.11.1j
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I. INTRODUCTION

When we intend to perform a numerical simulation
complex flows such as turbulent flows in geophysical s
tems or microhydrodynamical flows in soft materials, we
ten encounter the difficulty that the resolution is too low w
a macroscopic model or the system size is too small wit
microscopic model to obtain significant results. This is d
to the fact that a nonlinearity of governing equations cau
an interference among degrees of freedom with differ
scales or the fact that macroscopic processes are inevi
affected by more microscopic processes which are not a
aged out. It is worth while studying a numerical method
connect a model with another one, where the scales of
phenomena described by the two models are different.
our knowledge there is no established method for such c
nection between models. The aim of this paper is to sho
prototype of such method for two-phase flow systems.

In two-phase flow systems, interfaces between the
phases play an important role. Let us imagine a coalesce
of two droplets. This event occurs in a small scale reg
which has comparable size to the interface thickness, whi
causes a change of global structure of the domains. T
means the dynamics of interfaces is crucial for the mac
scopic two-phase flows. In a macroscopic hydrodynam
treatment they are formulated as boundary value probl
with moving boundaries where the interfaces are regarde
mathematical surfaces or boundaries with an infinitesim
thickness.~For a recent review of the free-surface flow pro
lems, see Ref.@1#.! From a numerical view point, it is a
heavy task to solve these problems for complex syste
Moreover, the coalescence of domains must be incorpor
on some artificial assumptions.

On the other hand, as long as slow dynamics of ph
ordering systems@5#, there is a mesoscopic model to d
scribe the dynamics of the order parameter field where
interface is expressed as a singular region of the field. S
the order parameter field is smooth even in the interfa
regions, the coalescence of domains are naturally descr
with no artificial assumptions. However, the size of inter
cial region or the interface thickness is very small compa
to the typical domain size in the systems which we wo
like to consider. For some materials, the ratio of the interf
thickness to the domain size is 1022–1024 @2#. To obtain
PRE 611063-651X/2000/61~4!/4100~7!/$15.00
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rheological properties of some dispersion system, for
ample, we must carry out a simulation in a huge system

In order to overcome these difficulties a certain kind
multiscale modeling should be explored. As a first step,
would like to model a simple but nontrivial system in vie
of the multiscale modeling. In our model the mesosco
dynamics is incorporated into the macroscopic hydrodyna
cal model, and the system is constructed with two laye
systems corresponding to the macroscopic and mesosc
dynamics. Since the mesoscopic dynamics is relevant o
near the interface, we can reduce computational tasks
restricting domains of computation within the interfacial r
gions.

This paper is organized as follows. In the next section
construct a two level model after introducing the mac
scopic and mesoscopic models. Next, we carry out numer
simulations in some simple cases and demonstrate thei
sults. We also present some results of the simulation whic
performed on droplet systems under shear flows. Finally,
summarize this work.

II. HIERARCHICAL MODELING

A. Macroscopic hydrodynamic equations in a two-phase
system

Macroscopic two-phase flows in isothermal systems
usually formulated by the Navier-Stokes equations a
boundary conditions at interfaces between the two phase
this paper we study low Reynolds number fluids so that
convection term can be neglected. For two immiscible flu
A andB, the governing equations with no body forces are

ra

]va

]t
52“pa1haDva , ~1!

“•va50, ~2!

wherea5A or B andra , va , pa , andha are the density,
the velocity, the pressure, and the shear viscosity ofa fluid,
respectively. With no mass transfer across the interface,
boundary conditions at the interface are given by

vA2vB50, ~3!
4100 © 2000 The American Physical Society
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~TA2TB!•n1skn50, ~4!

wheren is the unit normal vector~directed intoA) to the
interface,Ta[2paI1ha(“va1“va

T) is the stress tenso
~I is the unit tensor and“va

T is the transpose of the tenso
“va), s is the surface tension, andk is the mean curvature
of the interface defined as the sum of principal curvatur
Here we have assumed that the surface tensions is constant.

B. Model in interfacial regions

The above model does not describe a precise dynamic
a system which has diffusive interfaces. In order to desc
the proper dynamics of two-phase flow in the interfacial
gions, we employ the Cahn-Hilliard-type model under ex
tence of flow field which is called ‘‘model H’’ according to
the terminology of the critical dynamics@3,4#. This model
has been used to describe the dynamics of phase sepa
@5–8#.

We consider a phase-separating binary fluid mixt
which is characterized by a scalar order parameter field.
order parameter field corresponds to local concentration
ference between the two phases. Letc(r,t) be the order
parameter field at positionr and timet, andv(r,t) the local
velocity field of the fluid. Time evolution of the system
determined by the following set of equations in the abse
of thermal fluctuations~hereafter we omit the arguments
the variables unless any confusion arises!:

]c

]t
1~v•“ !c5LDm, ~5!

r
]v
]t

52“p1m“c1“•@h~“v1“vT!#, ~6!

“•v50, ~7!

whereL is the kinetic coefficient,r the fluid density which is
assumed to be constant independent ofc, p the pressure, and
h the shear viscosity.

Equation ~5! represents the conservation ofc with the
diffusion flux 2L“m. The chemical potentialm is derived
from the free energy functionalF@c# as m5(d/dc)F@c#.
We assume the following Ginzburg-Landau type free ene
for F@c#:

F@c#5E drFK

2
u“cu22

e

2
c21

g

4!
c4G , ~8!

whereK, e, andg are positive constants.
The surface tension term, the second term on the r

hand side of Eq.~6!, arises in the Navier-Stokes equation~6!
due to inhomogeneity ofc. The shear viscosityh may de-
pend onc. We expand it with respect toc up to the first
order, that is,h5h01h1c with constantsh0 andh1.

We now put the above equations into dimensionless fo
Let l 0 and t0 be units of space and time, respectively. T
velocity and the order parameter are, respectively, scale
u0[ l 0 /t0 andc0[(6e/g)1/2 which is the equilibrium value
of the order parameter. We introduce dimensionless par
eters j[@K/(e l 0

2)#1/2 and D[Le/(u0l 0) which determine
s.
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the units of space and time, respectively. Note thatl 0
5(K/e)1/2 and t05K/(Le2) when j5D51, and they give
the interface thickness and diffusion time, respectively. U
ing these scalings, the model equations now become as
lows ~henceforth we use the same notation for dimension
variables as for the corresponding variables having phys
dimensions!:

]c

]t
1~v•“ !c5DDm, ~9!

]v
]t

52“p1Gm“c1PD“@n~“v1“vT!#, ~10!

“•v50, ~11!

with

m52j2Dc2c1c3, ~12!

n511n1c, ~13!

whereG[ec0
2/(ru0

2), P[n0 /(Le), andn0 is the dynamic
viscosity when c50, that is, n05h0 /r and n1
[(h1 /h0)c0. Equations~9!–~13! form a basic model for the
dynamics in the interfacial region. The dimensionless para
etersG, P, and n1 characterize physical properties of th
system. Note that the surface tension in this system is gi
by (2A2/3)(K/e)1/2ec0

2 ~see, for example, Ref.@4#!, and if
we define the dimensionless surface tensions scaled by
ru0

2l 0, it is given bys5(2A2/3)jG. It is also noted that the
equilibrium solutions with no flow field are given bym50
and the interface is defined as a set of points that sat
c(r)50.

We now discuss a thin interface limit (j→0) of Eqs.
~9!–~11! that should yield the macroscopic equations wh
correspond to Eqs.~1!–~4!. For simplicity, we here conside
a Stokesian flow, that is,

2“p1Gm“c1PD“•@n~“v1“vT!#50 , ~14!

instead of Eq.~10!. We assume that the order parameter fie
is almost in equilibrium and radii of curvatures of interfac
are always much greater than the interface thicknessj. In the
limit of j→0, c can be regarded as a step function, that
c511 ~in A phase! or 21 ~in B phase!. Equation~14! now
becomes, in the bulk regions,

2“p1PD~16n1!Dv50, ~15!

where plus or minus sign in front ofn1 correspond to theA
or B phase, respectively. The boundary condition~4! at the
interface can be obtained by integrating Eq.~14! over a small
cylindrical regionV including a part of the interface. Th
unit normal vectorn to the top~or bottom! face ofV coin-
cides with the normal to the interface. If we introduce a u
vector n̂(r) at r around the interface defined asn̂(r)
[“c/u“cu which coincides withn at the interface, we have

Dc5~“•n̂!u“cu1n̂•““c•n̂. ~16!
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When we choose a local coordinate system where one o
coordinatesz is taken alongn̂, we obtain from Eqs.~12! and
~16!, near the interface,

m5j2k
]c

]z
2j2

]2c

]z2
2c1c3 ~17!

.j2k
dce

dz
, ~18!

wherek52“•n̂ is the sum of principal curvatures of th
interface andce[tanh(z/A2j) is the equilibrium profile ofc
(z50 at the interface!. Using Eq.~18!, the integral of the
second term of Eq.~14! is expressed as

E
V

drGm“c.E
2«

«

dzGj2kS dce

dz D 2

nS, ~19!

where« andSare a half of the height and area of the top~or
bottom! surface of the cylinder region, respectively («,S
!1). If we rescale the length byj, andj→0, then we have

E
2«

«

dzGj2kS dce

dz D 2

5E
2`

`

dz̃Gk̃S dce

dz̃
D 2

5
2A2

3
Gk̃5sk, ~20!

where z̃[z/j, k̃[jk. Thus we obtain the dimensionles
version of Eq.~4! as a boundary condition for Eq.~15!. Here
we have required that the velocity field is continuous at
interface~also see the Appendix!.

C. Two-level model

The model described in the previous section should y
the macroscopic equations in the thin interface limitj→0.
However, here we would like to model the macroscopic tw
phase flow, keepingj finite. Since the order parameterc
varies in localized regions with scalej, while the velocity
field v slowly varies, we split the system~9!–~13! into two
layered systems corresponding to the macroscopic and
soscopic systems.

In order to do this, we define a coarse-grained fi
^u(r)&h for a field u(r) at levelh as

^u~r!&h5E dr8Gh~r2r8!u~r8!, ~21!

whereGh(r2r8) is a weight function having the following
properties:

E dr8Gh~r2r8!51, lim
h→0

Gh~r2r8!5d~r2r8!.

~22!

The levelh represents a degree of coarsening. A typical
ample ofGh(r2r8) is the Gauss function
he

e

d

-

e-

d

-

Gh~r2r8!5~2ph2!2d/2 expS 2
ur2r8u2

2h2 D , ~23!

in d-dimensional space. Another example is

Gh~r2r8!5H Vh
21 uxi2xi8u<h ~ i 51, . . . ,d!

0 otherwise
~24!

where xi (xi8) is the ith component ofr (r8) and Vh

[(2h)d.
Now we consider two layered systems. One is an origi

system and the other is a coarse-grained system. Sym
cally, a coarse-grained field̂u& for a field u in the original
system is expressed as^u&5Gu with a linear operatorG.
Here we have omitted the suffixh to ^•••&. Since the opera-
tor G commute with differential operators, interactions b
tween the two systems arise from the nonlinear terms in E
~9!–~13!. If these terms are decoupled except for the surf
tension term in Eq.~10!, our model can be described as fo
lows. The velocity field̂ v& in the coarse-grained system
determined~for given c) by

]^v&
]t

52“^p&1PD“@n~^c&!~“^v&1“^v&T!#1F,

~25!

“•^v&50, ~26!

where F is the force due to inhomogeneity ofc which
should be calculated from the original system as

F5G^m“c&. ~27!

In the original system the following equation ofc is solved
for given ^v&, after a prolongation of̂v& from the coarse-
grained system,

]c

]t
1^v&•“c5DDm, ~28!

wherem is given by Eq.~12!.
When the system contains well defined domains, that

the order parameterc is almost in equilibrium, we can defin
the interfacial regionI as the region in which the conditio
u“cu.d for d.0 (d is a constant parameter! andD to refer
to the other region which consists ofN connected regionsDi

( i 51,2, . . . ,N), namely,D5ø i 51
N Di ~see Fig. 1!. In this

situation we may reduce the number of degrees of freed
of the model provided thatc is almost in equilibrium inD.
Equation~28! is solved only in the interfacial regionI with
boundary conditions

c5c̄ i , m5m̄ i on ]Di ~ i 51,2, . . . ,N!, ~29!

where]Di denotes the boundary of domainDi , c̄ i , andm̄ i
are the boundary values forc and m, respectively. If we
assume thatc rapidly relaxes inDi , c̄ i might be constant
and m̄ i52c̄ i1c̄ i

3 . Introducing variablesQi[*Di
drc ( i

51, . . . ,N), c̄ i is given by
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c̄ i5Qi Y E
Di

dr. ~30!

The conservation ofc @Eq. ~28!# implies

d

dt
Qi52E

]Di

dani@c̄ i^v&1“m#, ~31!

where the integral is taken over]Di (da is a surface ele-
ment! and ni is unit normal vector to]Di ~directed outside
Di). Equations~25!–~31! form another version of our mode

III. SIMULATION AND RESULTS

A. Numerical method

In the previous section, two models are constructed. O
consists of Eqs.~25!–~28!. ^v& andc are solved in the whole
regions of the coarse-grained and the original systems
spectively. We refer to this model as model I. The oth
consists of Eqs.~25!–~31! where c is solved only in the
interfacial region of the original system, while^v& is solved
in the whole region of the coarse-grained system. We refe
this model as model II.

We carry out numerical simulations in two-dimension
systems for the model I and a simplified version of mode
~see below!. For each model~I or II ! Eqs. ~25!–~28! are
numerically solved using the finite difference method on t
square latticesL0 andL1 corresponding to the coarse-grain
and the original systems, respectively. The latticeLl ( l 50 or
1! hasMl3Nl lattice points and mesh sizeD l . We choose
D052D1 (M05M1/2, N05N1/2) and a lattice point (i 0 , j 0)
on L0 to share the same place as (2i 1 ,2j 1) on L1(0< i 0
,M0, 0< j 0,N0, 0< i 1,M1 , 0< j 1,N1). The size of a
time stepDt0 in coarse-grained system should be differe
from that in original systemDt1. We setDt054Dt1. Be-
cause of numerical convenience, we adopt Eq.~24! as the
smoothing function withh5D1. When we need values o
^v& on L1 in calculating Eq.~28!, we get the values by the
bilinear interpolation from^v& on L0. Although c is not
strictly conserved by this interpolation, the total amount oc
keeps its initial value within 0.2% error through the simu
tion shown in the next section.

In the actual simulation shown below we apply a simp
fication that the boundary valuesc̄ i is always the equilibrium

FIG. 1. A schematic picture of domains. The gray regions
long to the interfacial regionI and other regions belong toD.
e
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l
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values, that is,c̄ i561 and ni•“m50 on ]Di so that
dQi /dt50. We refer to this model as model II8.

B. Results for some simple systems

The simulations of both models~I and II8) are carried out
with the following parameters:D51, j250.5, G5P51.0,
n150.5, M05N0564, D051.0, and Dt050.01. For the
simulation of model II8 we setd250.01. To compare their
results we also perform another simulation of the prec
model ~9!–~13! on L1 which we refer to as model O. We
impose the periodic boundary conditions on these system

We create a disklike domain with radiusR520 as an
initial condition (c51 or 21 inside or outside of the do
main, respectively, andv50 at every point!, and calculate
the time evolution of the system for sufficiently long time
get a relaxed system. Figures 2 and 3 shows the profilesc
and^p&, respectively, along the line across the center of
domain for the three models att5100. We can see that th
model I is a good approximation of the model O. Howev
the model II8 slightly underestimates the pressure differen
between the inside and outside of domain. This may be
cause of an underestimation of the surface tension due to
finite cutoff d for u“cu. Remember that the surface tensio
s for this system is given byGj2*2`

` (dc/dz)2dz, wherez
is a coordinate along the normal to the interface.

- FIG. 2. The profiles ofc along the line across the center o
domain att5100. Results of models O, I, and II8 are shown by
circles, squares, and triangles, respectively.

FIG. 3. The profiles of̂ p& along the line across the center o
domain att5100. Results of models O, I, and II8 are shown by
circles, squares, and triangles, respectively.
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FIG. 4. Snapshots ofc shown by gray scale.
Light ~dark! gray indicates large~small! c. The
figures in the left, middle, and right columns co
respond to models O, I, and II8. The timet for the
figures from the top to bottom are 0, 50, 100, 20
and 300, respectively. For model II8c is shown
only in the interfacial regionI.
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Next, we investigate a coalescence process of two d
like domains. As an initial condition we put two disklik
domains with the same radiusR5A200 at close positions to
each other and setv50 at every point. In Fig. 4 we show th
snapshots ofc for the three models at several times. T
figures in the left, middle, and right columns in Fig. 4 corr
spond to the model O, I, and II8. The timet denoted by the
the figures are 0, 50, 100, 200, and 300, respectively, f
the top to bottom. In the figures for model II8, c is shown
only in the interfacial regionI. The result of model I shows
a good agreement with that of model O. The time evolut
of the system for model II8 is slightly slowed down. This is
due to the same reason as mentioned above. However
computation time is greatly reduced for model II8. The real
computation times for the simulations of model I and II8 are
about 1/6 and 1/10 of the time for model O, respectively

C. Droplet systems under shear flow

The hydrodynamic study of the deformation, breakup, a
coalescence of fluid domains has a long history and ex
sive studies have been made@1,9–14#. The mesoscopic dy
namics of phase separation processes under external
has also been studied in the last decade@15–17#. As an ap-
plication of our model, we demonstrate the simulation
droplet systems under shear flows.
k-
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m

n

the

d
n-

ws

f

We carry out the simulation using model II8 with the
parameters:D51, j250.5, andG51. These parameters ar
fixed in the following simulations. To impose the shear w
use the sheared periodic boundary condition which requ
that c(r,t) is the periodic function asc„r1Rmn(t),t…
5c(r,t) and v(r,t) satisfies v„r1Rmn(t),t…5v(r,t)

1Vmn , where Rmn(t)[(mLx1ġtnLy ,nLy),Vmn[(ġnLy ,
0) with integersm,n;Lx[D0M0 andLy[D0N0 are the sizes

of simulation box inx andy directions, respectively;ġ is the
shear rate.

First, we study a single droplet system under simple sh
flows. The numerical parameters are set asM05120, N0

560, D051.0, Dt050.01,d250.01. As an initial condition
we put a disklike domain~droplet! with radiusR58 at the
center of the simulation box (c51 in the domain andc5

21 otherwise! andv(r)5(ġy,0). We carry out the simula

tion with the parametersP51, n150, and ġ520.05 and
observe morphological change of the domain. In the ea
time region, the domain is gradually deformed and th
reaches a steady state. Figure 5~a! shows a snapshot ofc in
the steady state att5240. We do not observe any breakup
the domain at these parameter values. However, with
creasingP we observe breakups of the domains. In Fig. 5~b!
we show a snapshot of domains after breakups att5240
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(P55, n150, ġ520.05). We also perform the simulation
varying n1. The results are shown in Fig. 6. From the
results, it appears that the critical value ofP to breakup in-
creases asn1 increases whenP.1. On the other hand, fo
P<1 breakup of the domain is not observed.

Next we study a system in which two droplets collid
with each other under shear flow. We takeM0580, N0
560 and other parameters are set to the same as be
Initially we put two disklike domains which are sufficientl
separated in the system. These droplets are located
(215,27.5) and (15,7.5) and have the same radiusR58.
~Here we have set the origin of coordinate at the center of
simulation box.! By imposing the shear flow, these drople
collide with each other. The simulations are performed
various P and n1 to investigate whether the two drople
coalesce or not. The results forġ520.01 are summarized in
Fig. 7. For smallP(<1) the two droplets always coalesc
irrespectively ofn1. For P.1 they do not coalesce exce
for the two cases (P510, n1520.6 and P510, n15

FIG. 5. Snapshots of the single droplet system under the s

flow with ġ520.05 att5240. c are shown by the gray scale i
the same manner as before.~a! The droplet is stable and keeps i
deformed shape for smallP (P51,n150). ~b! The droplet breaks
up for largeP (P55,n150).

FIG. 6. P-n1 dependency of the morphology of a single drop

under the shear flow withġ520.05. The empty circles designa
the parameters where the droplet is stable. The filled circles de
nate the parameters where the droplet breaks up.
re.

t

e

r

20.9), and their shape are more elongated asn1 decreases.
These imply that the coalescence of domains is prima
controlled by the parameterP rather thann1. However, the
coalescence also depends on the viscosity ratio as it is d
onstrated by the two exceptional cases ofP510, n15
20.6 andP510, n1520.9. In this case, the droplets coa
lesce since they are extremely elongated and in contact f
long time which allows enough mass transports between
droplets by diffusion. Figure 8 shows the results forġ5
20.05. At this shear rate no coalescence occurs for 0.5<P
<10 and20.9<n1<0.9 except for the parameters indicate
by half-filled circles in Fig. 8 where after the droplets co
lesce once, the merged domain separates and become

ar

t

ig-

FIG. 7. Diagram that shows morphology of droplets after a c

lision under the shear flow withġ520.01. The droplets coalesc
for P<1 ~filled circles!, otherwise they do not~empty circles!. The
inserted images show typical time sequences~from top to bottom!
of collisions of droplets. These images are obtained forP50.5,n1

50.9 ~upper left!, P50.5,n1520.9 ~lower left!, P510,n150.6
~upper right!, andP510,n1520.6 ~lower right!.

FIG. 8. Diagram that shows morphology of droplets after a c

lision under the shear flow withġ520.05. The droplets separat
after a coalescence for smallP and largen1 ~half-filled circles!. For
large P and smalln1 they break up~filled circles! and otherwise
they do not coalesce~empty circles!. The inserted images show
typical time sequences~from top to bottom! of collisions of drop-
lets. These images are obtained forP50.5,n150.6 ~upper left!, P
55.0,n150.6 ~upper right!, P50.5,n1520.3 ~lower left!, and P
55.0,n1520.9 ~lower right!.
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droplets again. ForP.1 andn1<0 the droplets break up
which is consistent with the results of the simulation for
single droplet. Although processes of coalescence
breakup of droplets in general situations are rather com
cated, our simulations imply that the diffusivity ofc con-
trolled by P has a primary importance to coalescence
breakup of domains andn1 affects deformation or shape o
domains for fixedġ, R, ands.

IV. SUMMARY

We have constructed a model for two-phase flows wh
is incorporated with the mesoscopic dynamics of interfac
Our model has two layered systems corresponding to
macroscopic and mesoscopic dynamics, which provide
feasible method to connect the phenomena of differ
scales.

We have carried out the simulations of the two versions
our model~model I and II8) for the simple initial conditions
in two-dimensional systems. The results have been comp
to those for the precise model~model O!. The results of
model I is in good agreement with those of model O. W
have, however, observed that for model II8 the surface ten-
sion is slightly underestimated and hence the time evolu
is slightly slowed down. This is due to the finite cutoff fo
u“cu. However, model II8 works most efficiently among the
three. We have also demonstrated the simulation of dro
systems under shear flow and shown that the mesosc
dynamics is important in the process of coalescence
breakup of droplets.

In this study, we have shown a model for rather sim
binary fluids as a prototypical example of multiscale mod
ing. However, our model may be applicable to more com
cated system such as two-phase fluids with surfactant
polymers~ternary fluid mixtures! whose dynamical behavio
is a critical subject to study. Such an extension of our mo
is a future problem.
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APPENDIX

In this Appendix we show that the macroscopic veloc
field in our model is continuous at the interface in the th
interface limit in a particular case. Consider a flat interfa
located atz50, that is, c(r)5ce(z)5tanh(z/A2j) and a
shear flow parallel to the interface so that the velocity fie
has only x component which depends onz, that is, v(r)
5„vx(z),0,0…. In this casec is not dependent on time an
the Stokes equation~14! is simplified as

d

dzF ~11n1ce!
d

dz
vx~z!G50. ~A1!

The solution of this equation is

vx~z!5A2jġ0ln$@12ce~z!#a@11ce~z!#b@11n1ce~z!#g%

1u0 , ~A2!

with

a[2
1

2~11n1!
, b[

1

2~12n1!
, g[2

n1

12n1
2

,

~A3!

where ġ0[dvx(0)/dz and u0[vx(0). Asymptotic forms
vx

6(z) of vx(z) asz→6` are given by

vx
6~z!5

ġ0

16n1
z1

A2jġ0n1

12n1
2

ln
2

16n1
1u0 . ~A4!

These may give the macroscopic flow in the bulk phase
we extrapolatevx

6(z) into the interface region, we find tha
these asymptotic velocities are continuous atz5z0@vx

1(z0)
5vx

2(z0)# with

z052
A2j

2
ln

11n1

12n1
~A5!

which does not depend onġ0 and u0. This means the con
tinuation point (z5z0) of the macroscopic velocities alway
deviates from the interface (z50) when n1Þ0. However,
this deviation vanishes asj→0 and the macroscopic veloc
ties are continuous at the interface in this limit.
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